翻訳と辞書
Words near each other
・ Carley float
・ Carley Garner
・ Carley Gracie
・ Carley Mijović
・ Carley State Park
・ Carles Riba
・ Carles Sabater
・ Carles Sans
・ Carles Santos
・ Carles Solà i Ferrando
・ Carles Trepat
・ Carles, Iloilo
・ Carlese Franklin
・ Carlesia
・ Carleson measure
Carleson's theorem
・ Carleson–Jacobs theorem
・ Carless
・ Carless days in New Zealand
・ Carlester Crumpler
・ Carlet
・ Carleth Keys
・ Carleton
・ Carleton (1834-1974 electoral district)
・ Carleton (1995-2014 New Brunswick provincial electoral district)
・ Carleton (given name)
・ Carleton (New Brunswick federal electoral district)
・ Carleton (New Brunswick provincial electoral district)
・ Carleton (Ontario electoral district)
・ Carleton (Ontario provincial electoral district)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Carleson's theorem : ウィキペディア英語版
Carleson's theorem

Carleson's theorem is a fundamental result in mathematical analysis establishing the pointwise (Lebesgue) almost everywhere convergence of Fourier series of ''L''2 functions, proved by . The name is also often used to refer to the extension of the result by to ''L''''p'' functions for ''p'' ∈ (1, ∞) (also known as the ''Carleson–Hunt theorem'') and the analogous results for pointwise almost everywhere convergence of Fourier integrals, which can be shown to be equivalent by transference methods.
==Statement of the theorem==
The result, in the form of its extension by Hunt, can be formally stated as follows:
: Let ''ƒ'' be an ''L''''p'' periodic function for some ''p'' ∈ (1, ∞), with Fourier coefficients \hat(n). Then
:: \lim_ \sum_ \hat(n) e^ = f(x)
: for almost every ''x''.
The analogous result for Fourier integrals can be formally stated as follows:
: Let ''ƒ'' ∈ ''L''''p''(R) for some ''p'' ∈ (1, ∞) have Fourier transform \hat(\xi). Then
:: \lim_ \int_ \hat(\xi) e^ \, d\xi = f(x)
: for almost every ''x'' ∈ R.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Carleson's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.